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Abstract-The governing differential equations for the problem oflaminated axisymmetric spherical
shells undergoing large deformations are formulated using the principle of virtual work. An ana
lytical solution of the governing equations based on the Chebyshev-Galerkin spectral method is
investigated. The efficacy and applicability of the solution procedure is discovered using numerical
results. Parametric studies are conducted to bring out the effect of factors like orthotropy ratio, R/h
ratio, shear deformation and opening angle on the large deflection behaviour of laminated ortho
tropic spherical shells and interesting observations are made. The numerical results should prove
helpful in testing the nonlinear composite shell finite elements.

INTRODUCTION

The use oflaminated anisotropic structural configurations is increasing in applications with
aerospace, missile, hydrospace and auto industries owing to the variety of advantages they
offer when compared to the metallic materials. There are possibilities that these elements
are called upon to perform under severe loading conditions causing large deformations.
The number of investigations dealing with the behaviour of laminated composite shells
undergoing geometrically nonlinear deformations are rather limited in comparison to the
investigations concerning the geometrically nonlinear behaviour of composite plates.

Most of the work in the area of large deformation analysis of laminated shells is a
logical extension of works with composite plates or isotropic/orthotropic shell structures.
The stiffness, anisotropic material properties, bending-stretching coupling complicate the
analysis of shells made up of composite materials.

Librescu (1987), Stein (1986) and Dennis and Palazotto (1990) have contributed to
the geometrically nonlinear theories oflaminated composite shells. Noor and his co-workers
(Noor and Mathers, 1974; Noor and Heartly, 1977; Noor and Anderson, 1982; Noor and
Peters, 1986) have done a significant amount of research in the development and application
of shell finite elements applied to geometrically nonlinear theories of laminated shear
flexible elements based on assumed strains for the nonlinear analysis of shells. Chang
and Sawamiphakdi (1981) and Chao and Reddy (1984) have given the formulations of
3-D degenerated shell elements based on the total Lagrangian and updated Lagrangian
descriptions respectively. Reddy and Chandrashekhara (1985) presented results for large
deflections of laminated shell panels using a doubly curved shell element. Booton and
Tennyson (1979), Sheinman and Simitses (1983) and Saigal et al. (1986) have used the
finite element technique for the analysis of imperfect laminated composite shells. However,
to the authors' knowledge, there is hardly any analytical solution for the nonlinear analysis
of laminated spherical shells. The object of the present investigation is to give an analytical
solution to the problem oflarge axisymmetric deformation oflaminated orthotropic spheri
cal shells, which will provide bench mark numerical results to test the accuracy of finite
element solutions. In addition, the influence of different degrees of nonlinearity on the large
deformation behaviour of laminated spherical shells has been studied. Results of a number
of parametric studies are presented which will facilitate the practising engineers with a
better understanding of large deformation behaviour of laminated spherical shells.
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AXIS of symmetry

Fig. 1. Geometry of laminated annular shell.

MATHEMATICAL FORMULATION

An annular, moderately thick spherical shell composed of a number of perfectly
bonded, linearly elastic orthotropic layers is considered. The principal material directions
in each layer are assumed to coincide with the shell curvature directions. The coordinates
sand f) are assumed to coincide with the same principal curvature directions of the shell
reference surface. z is the normal outward distance from the reference surface (see Fig. 1).

STRAINS IN NONLINEAR ELASTICITY

The nonlinear strain displacement relations for a body undergoing large deformations
in general curvilinear coordinates are given by Novozhilov (1961). In the spherical polar
(</J-f)-r) coordinate system, Lame's parameters are given by

(I)

where a line element is given by

(2)

If the displacements in the 4>, f) and r directions are respectively u, v and w, the nonlinear
strains are then obtained as :
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where I" 12 and 13 are coefficients taking values of either zero or one depending upon
whether the associated nonlinear term is considered in the analysis or not. Three different
approximations regarding the range of nonlinearities are considered in the present inves
tigation:

(a) The nonlinear terms corresponding to the squares and products of the rotation of
the tangents alone are considered (Von Karman type nonlinearity). In such a case, II = 1,
12 = 13 = 0;

(b) The nonlinear terms due to the squares and products of the rotation of the tangents
are considered along with the products of strains and rotations. Here II = 12 = 1 and
13 = 0;

(c) All the nonlinear terms are considered. In this case, II = 12 = 13 = 1.

All the strains can now be transformed to the shell coordinate system by setting

r = (R+z),

ds = Rde/>. (4)

In the present analysis, only spherical shells undergoing moderately large axisymmetric
deformations are considered. With the assumption that the strains are not so large that the
squares and products of strains can be neglected compared to the products of strains and
moderate rotations, the cases (a) and (b) alone are considered in the present analysis. The
nonvanishing nonlinear strains for the axisymmetric case can then be written as:

I (cote/> w)
eo = eOO = (l+zjR) ~U+R '

(5)

DISPLACEMENT FIELDS

Assuming an axisymmetric displacement field allowing for shear deformation in the
sense of a first order theory,

U(s, 0, z) = u(s)+z&(s),

w(s, 0, z) = w(s), (6)
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where uand W represent the displacements in the meridional and transverse directions at
the point corresponding to the reference surface and &is the rotation of the normal about
the meridian.

SHELL STRAIN-DISPLACEMENT RELATIONS

Now substituting relations (6) in eqns (5), strains at any point (s, z) are written in
terms of the strains and change in curvatures at the reference surface. With the assumption
that (hi R) 2 « I, the strains can be written as:

eo = 0,

e, = (e~ +zA-?)/(l +zIR),

eo = (eg +d8)/(l +zIR),

ec = e~:I(l +zIR),

where the reference surface strains are given by:

° cot ¢. W
eo =-Tu+R'

and the reference surface curvatures are given by

(7)

(8)

A- 0 = d& -I~ (dW __~)+~ (dW _ E.)2
, ds I R ds R 2R ds R

(9)

In eqn (7) above, the term representing variation of transverse shear strain through the
thickness has been neglected.

STRESS RESULTANTS AND STRESS COUPLES

Corresponding to the strains defined in eqns (7)-(9), the stress resultants and stress
couples are defined as :

(10)

where h is the thickness of the shell.

CONSTITUTIVE RELATIONS

Assuming plane stress conditions in the s() plane, the stress-strain relation for the kth
layer of the shell bounded by the surfaces z = hk and z = hk _ I are given by:

(J.I = Q11 e, +Q12eO'

(Jo = Q12es + Q~2eO and 'sz = Q~4esz, (11)
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(12)

In the above relations E~ and mare the Young's moduli of elasticity of the material
in the kth layer in the meridional and circumferential directions, G~z is the transverse shear
modulus and vt (i, j = S, 0) are the Poisson's ratios.

STRESS RESULTANTS AND STRAIN RELATIONS

Substituting for the strains in eqn (11) from eqns (7)-(9) and using eqn (10), the
relation between the stress resultants and reference surface strains are written as:

and

{ {N}} = [[A]
{M} [B)

[B]]{{e}}
[D) {A}

(13)

In relations (13),

(14)

In eqns (13) and (14),

{NV = {NsNo},

{M}T = {MsMo},

{eV = {e~e3},

{AV = {A~).3}. (15)

(16)

where L is the number of layers in the laminate. In (14), K 2 is the shear correction factor
introduced to account for the nonuniform distribution of the shear strains through the
thickness of the shell.

EQUATIONS OF EQUILIBRIUM AND BOUNDARY CONDITIONS

The equations ofequilibrium and the associated boundary conditions for the laminated
spherical shell are derived using the principle of virtual-work. Equating the algebraic
sum of virtual work of all the forces acting on the shell to zero for an arbitrary virtual
displacement,

(17)

where

WI = virtual work done by internal forces,

WE = virtual work done by external forces.

The Euler-Lagrange equations for axisymmetric large deformations oflaminated spherical
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Ns+No _ dQs _ Qscot<jJ = q-I ~ (N.(~ _ dW))
R ds R Ids'R ds

-I N cott (~_ dW)+I ~ (Ms(~_ dw -eX))
Is R R ds Ids R R ds

with the associated boundary conditions requiring that anyone in each of the following
pairs of quantities is to be prescribed at a circumferential edge:

u=O or Ns+I2QseX = 0,

eX=O or Ms=O,

w=o or Qs+II {(Ns-Ms/R)(~~- ;) -MseX/R} = O. (19)

The stress-resultant-strain relations (13), (14), the equilibrium equations (18) and
the boundary conditions given in (19), completely define the problem of large deflection
behaviour of an axisymmetric laminated spherical shell. These equations are nonlinear in
nature and the methodologies for the solution of these equations are discussed below.

LINEARIZATION OF EQUATIONS

There are several established techniques for linearizing the nonlinear differential equa
tions such as the perturbation technique, the quasilinearization, the time-wise differentiation
techniques, etc. In the present analysis, a Taylor series expansion procedure is used to
linearize the equations. Alwar and Nath (1977) and Nath and Alwar (1978) have used this
technique for solving the nonlinear equations of large deflection and buckling behaviour of
circular plates and shallow spherical shells of isotropic or orthotropic materials.

The nonlinearities in a system are represented by the products of dependent variables
or their derivatives in the governing equations. One or more such terms in a product,
depending upon the degree of nonlinearity, can be expressed in terms of the previously
known values with respect to the marching variable.

Let X(~, if) Y(~, ij) be any typical product term. Then at any step J of load variable ij,
the value of anyone of the terms, say Y, may be expressed in a Taylor series as :

(
0yy- I) (0 2 y~J- I) L1 -2

(y)(J)=(y)(J-I)+ oij) Aij+ oij2) i + .... (20)

Retaining only the first three terms in the above series and using a finite difference
scheme for expressing the derivatives therein, the product term XYat step J is written as
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forJ=I, A=B=C=O,

for J = 2, A = 2, B = C = 0,

for J = 3, A = - 2, B = 2.5, C = 0,

for J> 3, A = 2.5, B = - 2, C = 0.5.
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(21)

(22)

The superscript * of YJ in eqn (21) designates that, during linearization, this term is
computed as indicated.

The governing differential equations of equilibrium (18) can now be written in linear
ized form. In this investigation only spherical shells subjected to uniform external pressure
q are considered. Introducing the following nondimensional quantities:

(p = lfJ, -lfJo, 1= R(p, ~ = (s-RlfJo)ll, t = hll,

I
(uwli) = h2(ulwha.lh), a44 = K 2A 44IEL h,

1 2
(aij bij d;j) = E

L
h3 (Aijh B;jh D;J (i, j = 1,2),

_ _ _ h 3

(NsNoQs) = Aqor (NsNoQs),

_ _ h2

(MsMo) = Aqor (MsMo), (23)

where Aqo = incremental pressure applied during the load step. Defining

y = (pt and x = (p cot lfJ,

the equilibrium equations (18) at the Jth load step are written in nondimensional form as:

N- J + (N- J N- J) + IQ- J - I [ 2N-*-J N-* -J 3M-* -J 2M-* -J 2M-* -J]s.~ X s - 0 'I' s - ,y s U - Y .\' w.~ +Y s u - y s w.~ - y s u

-I2(txQ:Ii J+tQ:'~IiJ+tQ:Ii.D,

- J - J - J - J _ 2 - *-J - * -J - * -J I - JMs.~+x(Ms -Mo)-Qslt - I,[y M s u -yMs w.~]+I2Qs (tu.~+'I'W ),

I - J - J I'i J - J _ 3 - * -J -J'I'(Ns +No)-x,,!-s -Q,.~ - Jt +/1[tNs (w.~~-yu.~)

+ txN:(w.~ - yu J)+ tN:'~(w.~ - yuJ) -tyM:(w.~~ - yu.~ +1i.D
- txyM,*(w.~ - yuJ+IiJ) - tyM:,~(w.~ - yu J+IiJ») -I2Q:yliJ. (24)

Substituting for strains in eqns (13) and (14) from eqn (8), and nondimensionalizing
using eqns (23), the nonlinear equations expressing relations of the stress resultants and
stress couples with reference surface displacements can be written as:

b 2 -J I (b 2 -* b 22-*)-J+b 2-J Aqo N-J-O+ 12t XIX -, 'I t yw.~ - 11 t Y u IX II t IX.~ - E
L
t4 s - ,
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ant2xuJ + II Oa 12t2y2U* -!b 12t2y3ii* +b 12t2y2tV~)iiJ

+aI2t2ii.~ +y(al2 +adM:·J+ II (~aI2t21v~ -aI2t2yii* -!b12t2yw~)W.~

b 2 -J I (b 2 -* b 2 2 -*) -J b 2 -J liqo N- J 0+ n t xa - I 12 t yw.~- 12 t Y u a + 12 t a'~-ELt4 0 = ,

b 12t2xii/ + II (!b II t2y 2U* ~dll t2y 3ii* +d ll t2y2W~)iiJ

+b ll t2ii.~ + y(b 'l +b 12 )>>,J +11(~bllt2w~ -b 'l t2yii* -!dllt2yw~)W.~

d 2 -J I (d 1 -* d 2 2 -*) -J d 2 -J liqo M-J 0+ 12 t XiX - I Ilt-yW.~- lIt Y u iX + lit a.?- E
L
t4 s = ,

bn t2xiiJ+II Ob l2 t2y 2ii* - !dI2 t2y 3ii* +dI2t2y2W~)iiJ

+bI2t2ii.~ +y(b l2 +b22 )WJ+II (~bI2t2w~-b I2 t2yii* - !dI2t2yw~)W.~

d 2 -J I· (d 2 -* d 2 2 -*) -J d 2 -J liqo M-J 0+ n t XiX - I 12 t yw.~- 12 t Y u a + 12 t iX.?- E
L
t4 fI = ,

BOUNDARY CONDITIONS

In the present analysis, the following boundary conditions are considered:

(a) Immovable clamped edges at ~ = 0 or ~ = I,

(b) Regularity conditions at the apex of a shell closed at a pole

W.? = ii = a = o.

(25)

(26a)

(26b)

CHEBYSHEV SERIES

In the present analysis, the analytical solution of the system of differential equations
in (24), (25) with the associated boundary conditions in (26) is sought using the Chebyshev-
Galerkin spectral method. The various properties of Chebyshev polynomials which are
important and are employed here are discussed below.

Any continuous function f(~) in the interval 0 ~ ~ ~ I can be represented by a series
of the form,

f(~) = ao T~(e)+ f arTr*(~),
r= I

(27)

where ar (r = 0, 1,2,3, ...) are the constants to be determined so as to obtain the best
possible fit.

Here,

Tr*(~) = rth polynomial in the shifted Chebyshev polynomial series,

= cos rt where cos t = (2e-I). (28)

These shifted Chebyshev polynomials satisfy the recurrence relations
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and the orthogonality conditions
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(29)

for m =1= n,

for m = n =1= 0,

for m = n = 0.

(30)

For any continuous functionJ(~), the series (27) is fast converging and good approximation
is obtained by taking a finite number of terms in the above series. J(~) can be expressed as

(31)

where, for a known function J(~), the coefficients ar are given by

(32)

If J(O and g(~) are two continuous functions represented by truncated Chebyshev series
as

M N

J(~) = 2:+ arT:(e) and gee) = 2:+ brT/"(f,),
r= 0 r= 0

(33)

where + indicates that the first term of these series must be halved, then the product of
these functions can be written in the Chebyshev series form as

M+N

J(e)g(e) = 2:+ crT:(e),
r= 0

where

M+N

Co = 2:+ a;b;,
;=0

M+N

Cr =! L a;(bU+ r) +bl;-rl) for 1 ~ r ~ M +N.
;= 0

If.f(e) and F (e) are expressed in Chebyshev series as

N N-I

J(e) = 2:+ arT:(e) and F(e) = 2:+ a~l)Tr*(e),
r= 0 r= 0

the coefficients satisfy the recursive relations

and a~l) can be obtained using ar as (Karageorghis, 1988)

N

cra~l) = 4 2: (r+2j-l)a(r+2j_l)'
j= I

(34)

(35)

(36)

(37)
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c = 2 c = {Io , r 0
r> I,

r < 1.
(37a)

SOLUTION PROCEDURES

The three displacement components and the five stress resultants occurring in the
governing equations (24)-(26) at load step J are expressed in Chebyshev series as

N

(&uw)J = I+ (arurwr)JT:m,
r= 0

N--I

(RjiieQsM,.Me)J = I+ (ArBrCrDrEr)JT:m·
r= 0

(38)

There are (8N+3) coefficients to be determined in (38) for the complete solution at
load step J. Six boundary conditions, three at each edge (one edge and the pole in the case
of shells with an apex) in (26) make it necessary to set up (8N - 3) algebraic equations from
consideration of (24) and (25).

The trigonometric term cot </> in the governing equations is expressed in terms of a
Chebyshev series in terms of ~ as

MI

cot </> = I + XrT:m·
r=O

(39)

The coefficients X r can be obtained by forcing the series to take on the actual values
at a number of chosen points in 0 < ~ < I.

Using the solution methodology presented by Alwar and Narasimhan (1990), the eight
equations in (24) and (25) are written in terms of Chebyshev polynomials. Equating the
coefficients of Chebyshev polynomials of the same degree r on either side of equations for
o~ r ~ N - 2 in re·spect of the equilibrium equations (24) and for 0 ~ r ~ N - I for stress
resultant-displacement equations (25), 8n - 3 algebraic equations can be written in terms
of coefficients in (38). With the six boundary conditions, there are 8n +3 equations for as
many unknowns. These 8n + 3 equations can be written in matrix form as:

where

[
[21)
[23]

[22]]{{Rd} = {{P}}
[24] {R 2 } {O}'

(40)

{RdT = {{aV{u}T{w}T},

{R 2V = {{AV{B}T{CV{D}T{E}T},

{p}T = {{O}{O}{q}T}.

The vector {a} is defined by the coefficients in the series of &as

(41 )

(42)

The vectors {u}, {w}, {A}, {B}, {C}, {D} and {E} are also similarly defined.
The first set ofmatrix equations in (40) are the algebraic equations due to the boundary

conditions and equilibrium equations, while the second set are due to the stress resultant
displacement relations. The authors had observed that about 12-14 terms of a polynomial
series are required for getting accurate results in the case of linear analysis of a laminated
spherical shell. This leads to a large system of algebraic equations to be solved for each
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iteration of a load step, which makes the computations costlier in the case of a nonlinear
analysis. However, the computational effort can be reduced by resorting to a solution with
partitioning. In the system of matrix equations (40), the matrices [Z2] and [Z4] are the
same for any load step. Equations (40) can be written as:

[[Z1] - [Z2][Z4]-' [Z3]]{Rd = {p},

{R z} = -[Z4]-'[Z3]{Rd· (43)

At the first iteration of the first load step, all four matrices [Zl], [Z2], [Z3] and [Z4]
and the vector {p} are generated. The matrix [Z4] is inverted and is stored along with [Z2]
for computations in all further load steps too. Algebraic equations (43) are set up and are
solved by Gaussian elimination with pivoting. For all further load steps, only the matrices
[Zl] and [Z3] need be generated along with the load vector. Within a load step, equilibrium
iterations are performed by taking the current values as those obtained in the preceding
iteration. Equilibrium iteration is continued until an average transverse deflection criterion
is satisfied wherein the values of average transverse deflection Wave in two successive
iterations should not differ by more than a pre-fixed percentage. For all the computations
reported herein, a convergence tolerance of 0.05% has been adopted. Wave is defined as

2R r'
Wave = -/- Jo w~ d~. (44)

RESULTS AND DISCUSSIONS

In all the results presented herein, loading due to uniform external pressure has been
assumed. The fibre orientations of the layers are specified either as 90° or 0°, depending
upon whether the layer is circumferentially reinforced or meridionally reinforced. The
material properties along the principal material directions in different layers are assumed
to be the same. The thicknesses of all the layers are also assumed to be the same. Shear
correction factors calculated based upon Whitney's method (1972) are used throughout the
present work.

Convergence studies are conducted to ascertain the number of terms in the Chebyshev
series to be used in the analysis. Table 1 presents the results of such an analysis in respect
of a two layered annular spherical shell. It can be observed that about 12 terms in the
Chebyshev series are sufficient for converged results. However, a l4-term approximation
has been used in the parametric studies.

Table 2 presents a comparison between the linear solution for a laminated shell as
obtained in the present solution and those presented by Alwar (1990). It can be seen that
the results agree well.

Figure 2 presents the results obtained by the present method of solution in respect of
isotropic spherical shells for three different shell parameters. To circumvent the problems
of convergence, a small hole was assumed at the apex of the shell and the regularity
boundary conditions were applied at the inner edge of this small hole. It can be observed
that the present solution yields results which are agreeing well with results presented by
Nath and Alwar (1978). The small discrepancies between the results are attributed to the
fact that Alwar and Nath have used the shallow shell theory for the solution.

The nonlinear responses of clamped two layer cross-ply shell are shown in Fig. 3 for
different orthotropy ratios. It is found that for a given shell configuration and lamination
sequence, shells with higher orthotropy ratios show lower nonlinearity and have higher
critical pressures. The load-deflection curves shown in Fig. 4 depict the effect of the Rjh
ratio on the large deflection behaviour of two layer cross-ply shells. It is observed that the
lower the Rjh ratio, because of an increased membrane action, the greater the reduction in
the softening nonlinearity.

Typical variations of the meridional stress resultant N s with increase in applied pressure
are shown in Fig. 5. It is seen in all the cases presented that the stress resultant initially

$AS 30:6-1
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Table 1. Convergence study, R/h = 20,4>. = 60",4>0 = 20°, EdET = 20,
VLT = 0.28, GLT = 0.5 ET , GTT = 0.2 ET • Lamination 0°/90°, Boundary

conditions: Clamped

2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
24.0
28.0
32.0

10 terms

0.02334
0.04730
0.07193
0.09728
0.12340
0.15036
0.17824
0.20712
0.23714
0.26844
0.33575
0.41206
0.50523

12 terms

0.02334
0.04730
0.07193
0.09727
0.12339
0.15035
0.17823
0.20712
0.23713
0.26842
0.33573
0.41204
0.50540

14 terms

0.02334
0.04730
0.07193
0.09728
0.12340
0.15035
0.17824
0.20713
0.23713
0.26843
0.33574
0.41206
0.50536

1.50..------------r------,
--- Noth

K=I
-Present
Boundary condition - clamped

1.25

1.00

L:

~ 075

0.50

0.25

2.5 5.0 7.5 10.0

qo4/Eh4

Fig. 2. Load deflection curves for isotropic shells.

Table 2. Linear solution for laminated shell, R/h = 30, rP, = 90", rPo = 10°, EL/ET = 20,
vLT = 0.28, GLT = 0.5 ET , GTT = 0.2 ET • Lamination 0°/90°. Boundary conditions:

Clamped

1. Maximum deflection (W)
2. Maximum meridional moment resultant (M,)
3. Maximum hoop stress resultant (Nfl)

Present
solution

0.14796
1.171
5.39

Alwar and
Narasimhan

(1990)

0.14782
1.175
5.410
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2.25

R/h=20'¢1=60·'¢0=20·
2.00 IILT=0.28, GLT=0.5 En

GTT =0.2ET
175 Lamination 0·/90·

.,,',-- 80undary condition-clamped
150 .... Pc, =ql"lETR2 h2....

/
/

125 ... /'...
o!: ... /'

... .......... '
100 ...

/...
I /

.......................... --1
0.75 ... /I ...-

// /' --EL/ET=5/"
0.50

// .......... -'-EL/ET=IO

?/
.......... ---- EL/ET=15

0.25 -- EL/ET=20/./

Wove

Fig. 3. Effect of orthotropy ratio on nonlinear static response.

increases with pressure, reaches a maximum and then starts decreasing, the peak values
being higher for laminates with more layers.

The effect of shear deformation on the response of a two layered laminated spherical
shells has been studied and the results have been presented in Figs 6 and 7. The results
corresponding to the case with no shear deformations (Classical Theory) were obtained by
setting very high values for transverse shear moduli (GTT = 10000 ET ). While the maximum
deflection is overestimated by the Classical Theory (Fig. 6), the average deflection, which
is a more general index of the total stiffness of the structure, is underestimated by the
Classical Theory (Fig. 7). These observations are again in conformity with the authors'
observations in earlier investigations (Alwar and Narasimhan, 1990; Narasimhan and
Alwar, 1992) that the Classical Theory overestimates both the maximum deflection and
natural frequencies of laminated orthotropic cross-ply spherical shells.

Figures 8 and 9 present the effect ofdifferent nonlinear terms considered in the analysis
on the predicted nonlinear response. The three cases investigated are:

(a) Von Karman rotation term only is considered (II = I, /2 = /) = 0).
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Fig. 4. Effect of curvature on nonlinear static response.



870 R. S. ALWAR and M. C. NARASIMHAN

100

75

tz 50

2.5
o 0°/90°
6 0°/900 0./90°
o 0°/90%°/90%°/90°
• 10°/90% °/90.)2

ql"lE L h4

Fig. 5. Variation of meridional stress resultant N, with applied pressure (fit, = 10 6h3NJEd 4
).

48

40

32

24

16

8

o

R/h =20, cp, =60°, cpo= 20°

E L GLT GTT
E

T
=25, E;" =0.5, E;" =0.2

/lLT=0.28, Lamination 0°/90°

Boundary conditions - clamped

- - - Classical theory

--- Shear deformation theory

02

w/hl{=0.5)

Fig. 6. Effect of shear deformation on nonlinear static response.

1.00.80.6

Classical theory

Shear deformation theory

0.402

8

o

16

32

48
R/h =20,cp,=600,cpo=200
E L GLT GTT
E

L
=25'E-;=0.5, E;=0.2

40 /lLT= 0.28, Lamination -0./90°

Boundary conditions -clamped
./

./
./

./
./

./
./

./
./

//
/.

/.
/.

/.
/.

I..
I.

I.

":c..J
lIJ 24
'b

0"

Walle

Fig. 7. Effect of shear deformation on nonlinear static response.



Nonlinear analysis of spherical shells 871

8.-----------------"""'"'::::_-:1
7

6

5

3

2

0.6

Wove

Fig. 8. Effect ofdifferent ranges of nonlinearities on the nonlinear static response of laminated shell.

(b) Only the simplified Von Karman rotation term is considered. The Von Karman
rotation is given by (dwjds-ujR). When the shell is thin, ujR« dwjds, and hence can be
neglected in comparison to dwjds in the rotation term (I2 = /3 = 0).

(c) The product of strains with rotations are also considered (I\ = /2 = I, /3 = 0).
It can be seen from Fig. 8 that, when only the Von Karman rotations are considered

as applicable either to a deep shell (case a) or to a shallow shell (case b), the nonlinearity
is overestimated when compared to case c. Also, cases a and b give almost identical results
for the shells considered herein. In Fig. 9 it can be observed that the Von Karman type
theories underestimate the peak values of the meridional stress resultant.

CONCLUSIONS

The problem ofan orthotropic laminated spherical shell undergoing large axisymmetric
deformations is formulated using the principle of virtual work. An analytical solution based
on the Chebyshev-Galerkin spectral method is proposed. Numerical results presented
indicate that the method of solution gives sufficiently accurate results.
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Fig. 9. Effect of different ranges of nonlinearities on the large deflection behaviour of laminated
shells.
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The effects ofvarious geometric and material parameters on the nonlinear axisymmetric
response of laminated annular shells subjected to uniform external pressure have been
studied. It is observed that softening nonlinearity of these shells increases with an increase
in the R/h ratio but decreases with an increase in orthotropy ratio and number of layers.
The transverse shear deformation has an appreciable effect on the response of laminated
spherical shells and usually increases the maximum average deflection Wave which is not so
in the case of maximum deflections. It is also observed that Von Karman type theories
overestimate the softening nonlinearity of static response of laminated spherical shells.

REFERENCES

Alwar, R. S. and Narasimhan, M. C. (1990). Application of Chebyshev polynomials to the analysis of laminated
axisymmetric spherical shells. Compos. Struct. 15,215-237.

Alwar, R. S. and Nath, Y. (\977). Nonlinear dynamic response of circular plates subjected to transient loads.
Franklin Inst. JI303, 521-542.

Booton, M. and Tennyson, R. C. (1979). Buckling of imperfect anisotropic circular cylindrical shells under
combined loadings AIAA JI17, 276-287.

Chang, T. Y. and Sawamiphakdi, K. (1981). Large deformation analysis of laminated shells by finite element
method. Comput. Struct. 13,331-340.

Chao, W. C. and Reddy, J. N. (\984). Analysis of laminated composite shells using a degenerated 3-D element.
Int. J. Num. Meth. Engng 20,1991-2007.

Dennis, S. T. and Palazotto, A. N. (1990). Large displacement and rotation formulation for laminated shells
including parabolic transverse shear. Int. J. Nonlin. Mech. 25, 67-85.

Karageorghis, A. (1988). A note on the Chebyshev coefficients of the general order derivative of an infinitely
differentiable function. J. Comput. App/. Mech. 21, 129-132.

Librescu, L. (1987). Refined geometrically nonlinear theories of anisotropic laminated shells. Q. Appl. Math. 45,
1-27.

Narasimhan, M. C. and Alwar, R. S. (1992). Free vibration analysis of laminated orthotropic spherical shells. J.
Sound. Vibr. 154,519-529.

Nath, Y. and Alwar, R. S. (1978). Nonlinear static and dynamic response of spherical shells. Int. J. Nonlin. Mech.
13, 157-170.

Noor, A. K. and Anderson, C. M. (1982). Mixed models and reduced/selective integration displacement models
for nonlinear shell analysis. Int. J. Num. Meth. Engng 18, 1429-1454.

Noor, A. K. and Heartly, S. J. (1977). Nonlinear sheIl analysis via the mixed isoparametric elements. Comput.
Struct. 7, 615-626.

Noor, A. K. and Mathers, M. D. (1974). Nonlinear finite element analysis of laminated composite shells. Proc.
Int. Conf. on Computational Methods in Nonlinear Mechanics. Austin, Texas.

Noor, A. K. and Peters, J. M. (1986). Nonlinear analysis of anisotropic panels. AIAA JI24, 1543-1553.
Novozhilov, V. V. (1961). Theory of Elasticity. (Translated by J. K. Lusker) Pergamon Press, Oxford.
Reddy. J. N. and Chandrasekhara, K. (1985). Nonlinear analysis of laminated shells including transverse shear

strains. AIAA JI23, 440-441.
Saigal, S., Kapania, R. K. and Yang, T. Y. (1986). Geometrically nonlinear finite element analysis of imperfect

laminated shells. J. Compo Mater. 20, 197-213.
Sheinman, I. and Simitses. G. J. (1983). Buckling and post-buckling of imperfect cylindrical shells under axial

compression. Comput. Struct. 17,277-285.
Stein, M. (\ 986). Nonlinear theory for plates and shells including effects of transverse shearing. AIAA JI24, 1537

1544.
Whitney, J. M. (1972). Stress analysis of thick laminated composite and sandwich plates. J. Compo Mater. 6, 426

440.


